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Abstract 
Machine learning impacts everyday life in every field. This paper shows the application 
of machine learning in geoscience. Used machine learning model for classification and 
classification certainty estimation is ensembled from multilayer perceptrons each fitted 
in with different combination of variables. Used data consists of terrain data, borehole 
data, seismic refraction data and geoelectric data. Geophysics data was interpolated 
using IDW with a power parameter chosen based on a cross-validation process using 
mean squared error. Such prepared data was preprocessed and 49 data subsets were 
defined. Each multilayer perceptron was fitted in with the corresponding data subset 
using an optimal hyperparameter for that model. For ensemble learning classification 
max voting was used. Using a ratio of max voted class and number of votes certainty 
classification was estimated. Basic model metrics and prediction results are shown. 
Predictions are used for calculating robust orientational settlement map. 
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1 Introduction 
 
Geostatistics is a standard tool in geology used for analyzing and visualizing various types of data. It 
allows for the effective analysis of spatial variability and the creation of geological models.  
By integrating multiple data sources such as boreholes, geophysical profiles, and remote sensing data, 
geostatistics provides a robust framework for subsurface characterization and natural hazard assessment. 
Techniques like kriging and inverse distance weighting are commonly used to interpolate and predict 
spatial models. 
Pioneers of geostatistics in geology include Georges Matheron and Michel David. Georges Matheron is 
considered the founder of geostatistics, having developed the theoretical foundations and coined the 
term in the early 1960s. Michel David further advanced the field with his work on practical applications, 
particularly in mining geology. Their contributions have laid the groundwork for modern geostatistical 
methods used widely in geological and environmental studies.  
This paper examines geostatistical methods combining machine learning to generate a subsurface spatial 
model. The main objectives of this study are to (1) provide a subsurface a spatial model (2) provide 
spatial certainty model and (3) create a settlement map of foundation soil after the construction water 
load. 
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Figure 1. The broader project area showing the existing Gusić polje basin and the designed Gusić polje 2 basin  

 
The study area is located in central Croatia, in Ličko-Senjska County. The Senj Hydropower System 
(HPS) utilizes the water potential of the Lika and Gacka Rivers, situated between the Lička Visoravan 
plateau and the Adriatic Sea.  
The Lika River, with a catchment area of approximately 1125 km² and an average annual flow rate of 
about 28.76 m³/s, is a torrential stream with flow rates ranging from 0 to 1300 m³/s. The Gacka River 
has a catchment area of 584 km² and an average annual flow rate of about 15.65 m³/s, with flow rates 
ranging from 3.5 m³/s to 149 m³/s. 
The Senj HPS diverts water from the Lika River into the Gacka River and channels it through a common 
system for power generation in the Senj Hydroelectric Power Plant (HPP) with a maximum gross head 
of 437 meters. To reduce spillage losses, the second stage, HPP Senj 2, has been planned. The HPP Senj 
2 project includes the construction of the Gusić Polje 2 Compensation Basin, featuring 3,664.06 meters 
of lateral embankments and a storage capacity of 2.87 million cubic meters for daily inflow regulation. 
The basin and embankments will be waterproofed using geomembrane techniques. 
The existing Gusić Polje Compensation Basin of HPS Senj lies on the natural ground with karstic 
phenomena and is lined with clay. The new compensation basin, Gusić Polje 2, will be constructed 
adjacent to the existing one, connected via a culvert. Due to geological characteristics, settlements are 
expected. The surfaces to be covered include the slopes and bottom of the existing reservoir. 
For this technical solution, calculating the settlements of the basin and embankments' foundation soil is 
essential. Various geotechnical investigations, geophysics, and exploratory boreholes have been 
conducted in the area over the years. Estimating the spatial distribution and thickness of strata in karst 
landscapes is challenging, requiring advanced estimation techniques. 
Section 2 shows used raw data from geotechnical site investigations and terrain data. Section 3 presents 
data preprocessing. Sections 4 and 5 present model creation and evaluation by basic classification 
metrics. Section 6 is the results of predictions and section 7 is settlement calculations. Further in section 
8 is an interpretation of results and section 9 discussion.  
 
2. Raw data 
 
Raw data used in this paper are terrain data, boreholes data, geoelectric tomography data and seismic 
refraction data. 
For project purposes terrain survey was conducted and a TIN model was built. Raw terrain data is a 
collection of TIN points on the grid. Grid parameters of collected points are shown below in Table 1. 

GUSIĆ POLJE – EXISTING BASIN  

GUSIĆ POLJE 2 – DESIGNED BASIN  

501



 

EUROENGEO 2024 4th European Regional Conference of IAEG 
 

 
The grid raster from which data was collected is raster used all along in this paper. 
 

Table 1. Spatial variables boundary and step values 
 

 
 
Borehole data was collected during site investigations. Drilling was performed in both soil and carbonate 
rock. During drilling in cohesive soil, undisturbed samples were taken, and a standard penetration test 
(SPT) was conducted approximately every 2 meters. Extracted cores were placed in labeled core boxes 
and photographed. They were then mapped by a geologist, who also conducted approximate uniaxial 
strength tests using a manual penetrometer. Characteristic soil and rock samples were selected for 
geotechnical laboratory testing. The groundwater level was measured and recorded post-drilling. 
In all 92 boreholes were drilled. They essentially detected three materials: tuff, clay and limestone. To 
limestone material weathered zones were added. 
Three types of stratigraphy can be concluded from core drillings. Stratigraphy one is when tuff is above 
clay and clay is above limestone, second stratigraphy is the absence of clay in the middle, and third 
stratigraphy is the absence of tuff on the surface. 
Geoelectrical tomography was conducted to determine the depth and thickness of sediments in alluvial 
deposits, identifying lateral contacts in the underlying soil or rock due to lithological changes, creating 
vertical sections of materials and rocks along specified profiles, and locating fault zones. 
A total of 9440 meters of geoelectrical tomography was performed across 16 profiles at the Gusić Polje 
2 site using Wenner's electrode arrangement, with spacings of 2 and 5 meters. This setup provided 
interpretation depths of 24-60 meters. The profile locations matched those of the boreholes. 
The results of the geoelectrical test are presented in a multicolored two-dimensional section of the 
deposit resistivity distribution (Table 2). The presentation also contains prognostic lithological 
determination based on resistance, geological mapping and core determination of boreholes in the 
research areas. 
 

Table 2.Prognostic Lithological Determination Based on Geoelectrical Tomography Results 
 

Resistance (Ωm) Material 
0 to 45 Clay, dust, fine rubble 

45 to 100 Mixture of rubble, clay, and sands 
100 to 600 Highly to moderately fragmented carbonate rock 

mass, cracks mostly filled with rubble and clay 
600 to 7000 Poorly fragmented to compact carbonate rock mass, 

with fault zones possibly containing minor cracks 
and caverns 

> 7000 Zone of possible cracks without filling, minor 
caverns 

 
Geophysical investigations conducted in 1997 aimed to differentiate rock cover deposits in the subsoil 
using refraction seismic. Twenty-one profiles were surveyed with 135 geophones set along each profile 
and three shots per device. This geophone configuration enabled research to a depth of up to 40 meters.  
The refraction seismics identified four elastic environments based on primary elastic wave velocities: 

1. Surface Complex: Velocities < 500 m/s, including various sediments and materials. 
2. Cover Deposits: Velocities 600-1600 m/s, consisting of clays, weathered rock, and cavernous 

limestone. 
3. Fractured Rock: Velocities 1480-2300 m/s, comprising fractured rock and zones of weaker rock. 
4. Compact Rock: Velocities 2100-4000 m/s, including moderately fractured to compact rock. 
5.  

min max step

x - Easting 390320 391500 10

y - Northing 4978340 4979420 10

z - Elevation 410.1 456.7 0.2

d - Depth 0 20 0.2
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3. Data preprocessing 

The terrain data presented in Section 2 are discretized by depth at every 0.2 meters. At each point, a new 
elevation is calculated by subtracting the terrain surface elevation by depth, resulting in a data format as 
{x, y, z, d}. Borehole data, also presented in Section 2, are discretized by depth at every 0.2 meters, 
collecting the material in the corresponding interval. This data collection continues to a depth of 20 
meters for each borehole. After processing, each discretized point contains variables {x, y, z, d, and 
material}. The material is encoded with integers as follows: Tuff – 1, Clay – 2, and Limestone – 3. 
Geophysics data was spatially interpolated using Inverse Distance Weighting (IDW). IDW Power 
parameter was chosen based on a cross-validation process in a 70/30 ratio, observing mean absolute 
error and mean squared error of residuals between estimated and true values. Chosen power parameters 
were parameters obtained from averaging power parameters that produce a minimum of MAE and MSE 
functions. Interpolation was applied first on profile data and then on depth planes every 0.2 m on terrain 
data grid points and borehole data points. 
Seismic refraction profiles interpolation was the exception, instead, IDW Modified Shepard’s method 
was used, due to unfavorable data locations. A radius of influence of 35m was chosen. 35 m was a 
minimal value where data loss was acceptable. The cross-validation process of power parameter for 
IDW interpolation of seismic refraction depth planes data shows which is a good average power 
parameter. After the cross-validation process of the power parameter for IDW interpolation of 
geoelectric tomography profile data chosen power parameter was 3, and for depth planes was 5. 
After the interpolation process in each point on the grid data takes form {x, y, z, d, v, ohmm}, the 
exception is borehole data which points have form {x, y, z, d, v, ohmm, material code}. From such 
formed data 49 data subsets were defined, each subset containing a different combination of variables.  
The data was normalized to values between 0 and 1 using a simple min-max scaler. The minimum and 
maximum values were selected from the entire data domain. To define the training and testing datasets 
for model fitting, the boreholes were split into training and testing sets in a 70/30 ratio. The resulting 
train and test datasets had imbalanced classes. To address this, data containing dominant classes were 
removed until a class balance was achieved and applied to both the training and testing datasets. 

4. Multilayer perceptron 

As weak learners multilayer perceptron for classification (MLPC) was chosen. MLPC is classified as 
supervised machine learning feedforward model, detailed description can be found in Gareth(2023). 
Model architecture is defined by its hyperparameters.  
In this paper on each data subset different MLPC is used, with its own hyperparameters that are chosen 
by searching hyperparameter grid space observing accuracy on train set. Hyperparameters that was 
searched are: hidden layer size, activation function, l2.- regularization coefficient, Discrete value of each 
hyperparameter is presented in Table 3. To mitigated overfitting early stopping is used. As activation 
function of output layer softmax function is used. Output layer consists of three neurons, one for each 
class. 
 

Table 3.Discrete values of multilayer perceptron hyperparameters 
 

Number of hidden layers form 1 to 3 

Number of neurons in hidden layer from 2 to 10 

Activation function ['relu', 'tanh'] 

l2-regularization coefficient [0.00001, 0.0001, 0.001, 0.01, 0.1] 
 
Each MLPC model is fitted on train data using “optimal” hyperparameters and tested on test data. 
Basic metrics are conducted on train and test data to show how good a certain model is. Basic metrics 
contain for train dataset and test dataset accuracy, precision for each class, recall for each class and f1-
score for each class. 
Accuracy measures how many certain class is classified correctly. Expression for calculating 
accuracy: 
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Precision measures how many predictions as certain class is actual class. Precision is calculated by 
expression: 

��������� =  
��

(�����)
      (2) 

 
Recall measures how many model correctly classified certain class compared to actual existing class in 
dataset 

������ =  
��

(�����)
      (3) 

 
F1-score is harmonic mean of precision and recall. F1-score measures how well model balances between 
precision and recall. 

�1����� = 2 ∙  
���������∙������

����������������
     (4) 

where: 
�� – Number of true positives [1] 
�� – Number of true negatives [1] 
�� – Number of false positives [1] 
�� – Number of false negatives [1] 
 
Basic metrics of individual MLPCs for train and test data are shown in Table 4, also data subset 
parameters are introduced. Models on average had accuracy little below 70% on train and test data. 
The small difference between test and train accuracy indicates that there is no overfitting. For 
limestone class metrics show good performances, for tuff class fairly good, but for clay class metrics 
indicate poor performance, especially recall and consequently F1 score. This can be due to thick 
transitional zones of tuff and clay, weathered limestone discontinuities filled with clay and other 
reasons.  

5. Model ensemble 

To achieve a more robust estimator, model ensembling was employed, as detailed in Chollet (2017). 
The ensemble in this paper consists of 49 multilayer perceptron models from Section 4. The ensemble 
method used for the final classification was max voting, meaning the final classified class is the one 
with the most votes from all models. 
The introduced model ensemble is also used for creating a certainty map according to (5) which can be 
found in Erharter(2021) that helps visualize which area of the site is less certain and prone to additional 
investigation. Additionally, certainty is used for determining and displaying material noisy boundaries 
and geological features, such as faults and weathering zones.  
 

� =  
�����

∑ ���
�
�

��
�

��������
�

��
�

��������

      (5) 

where: 
�– certainty 
�� – class classified from single weak learner 
� – number of weak learners 
�������� – number of classes 
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Table 4. Basic metrics on train and test data of multilayer perceptrons  

 

 
  

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

1 v, ohmm 0.68 0.71 0.54 0.62 0.52 0.59 0.55 0.81 0.90 0.85 0.66 0.72 0.52 0.60 0.53 0.63 0.57 0.78 0.85 0.81

2 x, v 0.68 0.68 0.81 0.74 0.62 0.26 0.37 0.69 0.95 0.80 0.64 0.72 0.74 0.73 0.52 0.28 0.37 0.62 0.90 0.73

3 x, ohmm 0.46 0.43 0.68 0.53 0.90 0.06 0.11 0.46 0.62 0.53 0.41 0.51 0.48 0.49 0.39 0.11 0.18 0.37 0.66 0.47

4 x, v, ohmm 0.72 0.67 0.81 0.74 0.64 0.43 0.51 0.80 0.90 0.85 0.67 0.71 0.75 0.73 0.55 0.43 0.49 0.72 0.85 0.78

5 y, v 0.66 0.65 0.75 0.70 0.60 0.32 0.42 0.70 0.91 0.79 0.66 0.62 0.84 0.71 0.56 0.30 0.39 0.76 0.84 0.80

6 y, ohmm 0.45 0.37 0.82 0.51 0.47 0.25 0.33 1.00 0.27 0.43 0.42 0.37 0.91 0.52 0.45 0.13 0.20 1.00 0.22 0.36

7 y, v, ohmm 0.63 0.59 0.66 0.62 0.53 0.30 0.38 0.70 0.91 0.79 0.59 0.52 0.80 0.63 0.38 0.15 0.21 0.78 0.86 0.81

8 z, v 0.65 0.58 0.92 0.71 0.49 0.30 0.37 0.89 0.73 0.80 0.65 0.58 0.91 0.71 0.49 0.31 0.38 0.91 0.74 0.82

9 z, ohmm 0.66 0.60 0.95 0.73 0.62 0.27 0.37 0.79 0.78 0.79 0.71 0.62 0.96 0.75 0.73 0.34 0.47 0.84 0.83 0.84

10 z, v, ohmm 0.63 0.58 0.89 0.70 0.37 0.10 0.15 0.74 0.88 0.81 0.66 0.59 0.88 0.70 0.58 0.20 0.30 0.80 0.93 0.86

11 d, v 0.73 0.69 0.85 0.76 0.62 0.48 0.54 0.85 0.86 0.85 0.76 0.69 0.87 0.77 0.67 0.57 0.62 0.94 0.83 0.88

12 d, ohmm 0.75 0.71 0.83 0.76 0.64 0.58 0.61 0.90 0.85 0.87 0.77 0.72 0.84 0.78 0.67 0.67 0.67 0.97 0.81 0.88

13 d, v, ohmm 0.70 0.75 0.69 0.72 0.55 0.51 0.53 0.77 0.89 0.83 0.76 0.80 0.66 0.73 0.65 0.69 0.67 0.84 0.94 0.88

14 x, y, v 0.63 0.61 0.84 0.71 0.51 0.16 0.25 0.68 0.89 0.77 0.63 0.67 0.83 0.74 0.51 0.28 0.36 0.65 0.81 0.72

15 x, y, ohmm 0.47 0.43 0.66 0.52 0.59 0.13 0.21 0.49 0.62 0.55 0.44 0.47 0.71 0.57 0.38 0.03 0.05 0.40 0.59 0.48

16 x, y, v, ohmm 0.72 0.70 0.72 0.71 0.60 0.53 0.56 0.84 0.90 0.87 0.71 0.72 0.75 0.74 0.60 0.54 0.57 0.79 0.84 0.81

17 x, z, v 0.70 0.62 0.92 0.74 0.66 0.26 0.38 0.80 0.90 0.85 0.72 0.66 0.88 0.75 0.72 0.36 0.48 0.80 0.94 0.86

18 x, z, ohmm 0.54 0.50 0.76 0.61 0.31 0.15 0.20 0.69 0.70 0.69 0.59 0.66 0.67 0.67 0.50 0.35 0.41 0.58 0.76 0.66

19 x, z, v, ohmm 0.73 0.67 0.86 0.75 0.71 0.39 0.50 0.79 0.92 0.85 0.69 0.71 0.82 0.76 0.61 0.39 0.48 0.72 0.89 0.80

20 x, d, v 0.75 0.73 0.74 0.74 0.64 0.56 0.60 0.85 0.93 0.89 0.74 0.82 0.62 0.70 0.61 0.70 0.65 0.84 0.92 0.88

21 x, d, ohmm 0.75 0.81 0.68 0.74 0.59 0.76 0.66 0.90 0.80 0.85 0.78 0.89 0.71 0.79 0.63 0.84 0.72 0.91 0.79 0.85

22 x, d, v, ohmm 0.76 0.66 0.92 0.77 0.72 0.45 0.56 0.92 0.89 0.90 0.78 0.73 0.94 0.82 0.75 0.57 0.65 0.90 0.85 0.87

23 y, z, v 0.66 0.63 0.82 0.71 0.54 0.24 0.34 0.73 0.90 0.81 0.73 0.65 0.91 0.76 0.80 0.32 0.46 0.79 0.96 0.87

24 y, z, ohmm 0.57 0.48 0.75 0.59 0.52 0.30 0.38 0.76 0.65 0.70 0.53 0.43 0.89 0.58 0.55 0.15 0.24 0.89 0.57 0.69

25 y, z, v, ohmm 0.66 0.61 0.81 0.70 0.54 0.26 0.35 0.77 0.91 0.83 0.69 0.61 0.90 0.72 0.62 0.31 0.41 0.85 0.87 0.86

26 y, d, v 0.64 0.88 0.34 0.49 0.48 0.71 0.57 0.77 0.87 0.82 0.69 0.88 0.34 0.50 0.53 0.90 0.67 0.92 0.83 0.87

27 y, d, ohmm 0.73 0.74 0.80 0.77 0.59 0.60 0.60 0.87 0.78 0.82 0.74 0.74 0.81 0.77 0.60 0.71 0.65 0.97 0.69 0.80

28 y, d, v, ohmm 0.67 0.56 0.98 0.71 0.61 0.30 0.41 0.93 0.72 0.81 0.61 0.52 0.97 0.68 0.50 0.23 0.32 0.99 0.65 0.78

29 z, d, v 0.68 0.71 0.75 0.73 0.57 0.35 0.44 0.70 0.92 0.79 0.69 0.71 0.66 0.68 0.60 0.43 0.50 0.73 0.99 0.84

30 z, d, ohmm 0.73 0.72 0.78 0.75 0.60 0.54 0.57 0.84 0.86 0.85 0.77 0.74 0.78 0.76 0.66 0.69 0.67 0.94 0.84 0.89

31 z, d, v, ohmm 0.69 0.58 0.96 0.72 0.65 0.31 0.42 0.89 0.78 0.83 0.68 0.57 0.97 0.72 0.63 0.33 0.43 0.96 0.75 0.84

32 x, y, z, v 0.68 0.76 0.55 0.64 0.54 0.57 0.56 0.74 0.90 0.81 0.63 0.82 0.50 0.62 0.49 0.57 0.53 0.68 0.83 0.75

33 x, y, z, ohmm 0.51 0.86 0.40 0.55 0.42 0.26 0.32 0.45 0.85 0.59 0.52 0.89 0.47 0.62 0.53 0.16 0.25 0.42 0.95 0.59

34 x, y, z, v, ohmm 0.71 0.68 0.75 0.71 0.60 0.45 0.51 0.81 0.92 0.86 0.73 0.72 0.81 0.76 0.66 0.52 0.58 0.79 0.86 0.83

35 x, y, d, v 0.76 0.73 0.80 0.76 0.67 0.58 0.62 0.88 0.91 0.90 0.79 0.75 0.90 0.82 0.73 0.61 0.67 0.89 0.86 0.87

36 x, y, d, ohmm 0.70 0.65 0.82 0.73 0.66 0.36 0.47 0.78 0.92 0.84 0.73 0.68 0.93 0.79 0.81 0.41 0.54 0.77 0.87 0.82

37 x, y, d, v, ohmm 0.77 0.76 0.78 0.77 0.66 0.62 0.64 0.88 0.90 0.89 0.83 0.83 0.88 0.85 0.76 0.74 0.75 0.92 0.88 0.90

38 x, z, d, v 0.73 0.63 0.95 0.76 0.76 0.30 0.43 0.84 0.92 0.88 0.72 0.66 0.95 0.78 0.80 0.31 0.45 0.78 0.92 0.84

39 x, z, d, ohmm 0.74 0.71 0.80 0.75 0.66 0.48 0.56 0.81 0.92 0.86 0.74 0.83 0.82 0.82 0.67 0.52 0.59 0.72 0.90 0.80

40 x, z, d, v, ohmm 0.71 0.68 0.79 0.73 0.63 0.38 0.47 0.78 0.96 0.86 0.66 0.66 0.75 0.70 0.53 0.29 0.38 0.72 0.97 0.83

41 y, z, d, v 0.71 0.65 0.92 0.76 0.68 0.29 0.41 0.79 0.91 0.85 0.75 0.63 0.96 0.76 0.77 0.40 0.52 0.92 0.90 0.91

42 y, z, d, ohmm 0.70 0.68 0.83 0.75 0.60 0.40 0.48 0.79 0.88 0.83 0.70 0.59 0.91 0.72 0.65 0.31 0.43 0.91 0.89 0.90

43 y, z, d, v, ohmm 0.73 0.68 0.90 0.78 0.67 0.40 0.50 0.82 0.88 0.85 0.75 0.64 0.94 0.76 0.72 0.43 0.54 0.94 0.87 0.91

44 x, y, z 0.50 0.51 0.60 0.55 0.43 0.28 0.34 0.53 0.61 0.56 0.45 0.53 0.53 0.53 0.35 0.29 0.32 0.46 0.53 0.49

45 x, y, d 0.76 0.70 0.87 0.77 0.69 0.50 0.58 0.88 0.90 0.89 0.81 0.77 0.93 0.85 0.79 0.63 0.70 0.88 0.89 0.89

46 x, y, z, d 0.75 0.73 0.83 0.77 0.65 0.55 0.60 0.86 0.88 0.87 0.80 0.72 0.91 0.80 0.76 0.62 0.68 0.97 0.87 0.92

47 x, y, z, d, v 0.76 0.77 0.78 0.78 0.66 0.58 0.62 0.84 0.92 0.88 0.84 0.83 0.88 0.86 0.79 0.70 0.74 0.88 0.93 0.90

48 x, y, z, d, ohmm 0.77 0.77 0.78 0.78 0.65 0.62 0.64 0.86 0.89 0.88 0.87 0.88 0.89 0.89 0.80 0.83 0.81 0.94 0.89 0.91

49 x, y, z, d, v, ohmm 0.76 0.72 0.84 0.78 0.68 0.52 0.59 0.86 0.90 0.88 0.74 0.66 0.92 0.77 0.70 0.43 0.54 0.89 0.88 0.88

0.45 0.37 0.34 0.49 0.31 0.06 0.11 0.45 0.27 0.43 0.41 0.37 0.34 0.49 0.35 0.03 0.05 0.37 0.22 0.36

0.68 0.66 0.78 0.70 0.60 0.40 0.46 0.79 0.84 0.81 0.69 0.68 0.80 0.72 0.62 0.44 0.49 0.80 0.83 0.80

0.77 0.88 0.98 0.78 0.90 0.76 0.66 1.00 0.96 0.90 0.87 0.89 0.97 0.89 0.81 0.90 0.81 1.00 0.99 0.00

Class 2 - Clay Class 3 - Limestone

Min

Mean

Max

Model
Data Subset 

parameters

TRAIN TEST

Acc
Class 1 - Tuff Class 2 - Clay Class 3 - Limestone

Acc
Class 1 - Tuff
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Figure 2 shows the confusion matrix of the model ensemble, the matrix indicates good ensemble 
performance on tuff and limestone classes, but clay class remains problematic.  
 

 
Figure 2. Confusion matrix of model ensemble prediction on all data  

 
Table 5. Basic metrics of model ensemble  

 

 
 

The model ensemble improved all average metrics from Table 5 by 3% to 12%. The most notable 
increase was observed in the clay class, which initially had the poorest metrics from individual 
classifiers, as well as in the overall ensemble classification. This indcates the usfullness of the ensemble 
method. 

6 Results 

The model ensemble for classification developed in the previous section was applied to the preprocessed 
input data. Below, we present some prediction results as examples of what can be generated from such 
a model. 
 

 
Figure 3. (left) Tuff layer bottom boundary map, (right) Clay layer thickness map 

Precsion Recall f1-score

Tuff 0.71 0.89 0.79

Clay 0.72 0.49 0.58

Limestone 0.86 0.91 0.88

Ensembe 

accuracy
0.76
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Figure 4. (left) Limestone surface depths, (right) Generated average certainty map 

 

 
Figure 5. (left) Classification result profile at y= 4978800 on x-d plane , (right) Classification certainty profile at 

y= 4978800 on x-d plane 
 

 
Figure 6. (left) Classification result profile at y= 4978800 on x-z plane, (right) Classification certainty profile at 

y= 4978800 on x-z plane 

7 Settlement 

A Settlement was calculated using the formula for soil deposits under a uniform load of the future 
hydrostatic pressure to 48kPa which is equivalent of 4.8m water column. Total settlement is the sum of 
deformations of individual soil layers, determined by stress changes and compressibility. The soil 
column is divided into layers with assumed uniform compressibility. Calculated settlement has an 
orientational purpose, just to show which area is more prone to settlement. 

The expression for calculating the settlement is as follows: 

� =
�

��
�     (6) 
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where: 
�- soil settlement, 

�- vertical load, 

�- height of the soil layer, 

��- oedometer modulus of deformation. 
 
As previously mentioned, the subsurface spatial model was generated using data points on a 10 x 10 m 
grid. During the settlement map generation, each layer at each point was assigned a deformation 
modulus based on whether it was tuff or clay which is given below. The settlement for each layer at 
each point was calculated and summed to give the total settlement and the settlement map was created 
as shown in Figure 7. 
Used oedometer modulus of soil deposits: Tuff - �� = 2 ��� and Clay - �� = 10 ��� 
 
 

 
Figure 7. Settlement map 

8 Interpretation of results 

The results of this work include a spatial subsurface model, a spatial classification certainty model, and 
a settlement map, with this paper presenting only a glimpse of the findings. The aim is to demonstrate 
the value of the output from such models. In Figure 3(left), three areas with thick tuff deposits are 
observed, with tuff thickness increasing in the northeast direction, as does the clay, as shown in Figure 
3(right). A limestone bedrock ridge is detected in the same direction, dividing the basin into two parts, 
as confirmed by the profile in Figures 5 and 6. The most intriguing aspect is the classification certainty 
of the profiles. At material boundaries, the certainty is almost 0, which is expected. However, the 
interesting parts are the low certainty zones in the limestone, which can be interpreted as fault zones or 
extremely weathered rock, essentially mixed limestone boulders with clay. These zones were added to 
the limestone as mentioned in Section 2. The average certainty map of the site highlights locations with 
low average certainty that are prone to additional investigations. Nevertheless, below the limestone 
layer, which has high certainty at bedrock locations, this high certainty significantly impacts the average 
values. The settlement map shows a resemblance to the tuff boundary depths map. This similarity is 
reasonable because tuff has five times more influence on settlement than clay. 
 

9 Conclusion 

This paper demonstrates the implementation of geostatistics and machine learning in geosciences for 
creating spatial subsurface models. Machine learning has an advantage over classical interpolation 
methods because it is better in generalization and can effectively deal with large high-dimensional, large 
datasets, can solve highly non-linear problems, and its computational complexity results are lower. After 
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preprocessing the raw data, multilayer perceptrons were fitted to different data subsets. While the overall 
metrics of the individual multilayer perceptron models were slightly above chance, combining them 
with the ensemble method resulted in a powerful and robust tool. The results presented in this paper 
highlight various applications of such a model. A spatial subsurface model was created, an average 
certainty map was generated, and information about soil deposits and the limestone surface was derived. 
Additionally, geomorphological features can be detected, although such claims require further 
validation. However, the model has its limitations. While it generalizes well, some specific information 
is lost. For instance, the model could not detect areas where tuff is directly above limestone or where 
clay is on the terrain surface, and it has a problem with correctly classifying clay. Nonetheless, these 
areas exhibit low certainty, demonstrating the effectiveness of the classification certainty model. 
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