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Abstract 
Measure While Drilling (MWD) data, a high-resolution sensor dataset collected during 
rock tunnel excavation worldwide, is underutilised, mainly serving for geological 
visualisation. Recent studies have demonstrated that MWD-data can identify rock type 
and rock mass quality for data from short blasting holes.  Currently, there are no reliable, 
efficient methods in tunnelling to accurately predict rock mass characteristics in 
advance, which limits planning of advance rock support, excavation design, and the 
logistical planning for reuse of excavated rock. Traditional exploratory methods, such 
as geophysics, core drilling, or subjectively interpreted hammer holes, suffer from being 
time-consuming, costly, and offering insufficient resolution. To overcome these 
limitations, we employed ensemble machine learning models on MWD sensor data from 
24 m exploratory holes in infrastructure tunnels with diverse geology. This approach 
enables accurate predictions of rock type and rock mass quality, providing a planning 
horizon of several days. We provide confidence metrics for the predictions, enhancing 
decision support by identifying areas of uncertainty. Our approach, particularly focusing 
on the challenging geological transition zones, achieved balanced accuracies above 0.9 
for rock type and 0.8 for rock quality (Q-class). This advancement significantly 
improves the planning and execution of rock tunnelling projects. 
 
Keywords 
Machine learning, MWD, rock mass characterisation, geological transition zones, 
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1     Introduction  
 
Measure While Drilling (MWD) data, a high-resolution sensor dataset collected during tunnel 
excavation, is currently underutilised, primarily serving for geological visualisation. Recent studies have 
demonstrated that MWD data can be translated into rock type and rock mass quality for short blasting 
holes (Hansen, Erharter, et al., 2024; Hansen, Liu, & Torresen, 2024). There are arguably no reliable, 
efficient methods in tunnelling to accurately predict rock mass characteristics several blasting rounds 
ahead, which does not limit the excavation process (Liu & Gan, 2023). Traditional exploratory methods, 
such as geophysics and core drilling, are time-consuming, costly, and typically offer insufficient 
resolution. Another common method involves drilling exploratory hammerholes and subjectively 
interpreting the penetration rate and colour of flushing water, which is subjective and provides no 
detailed information about rock type and rock mass quality. Existing methods exhibit high uncertainties, 
and the communication of these uncertainties is not well developed. 
 
Accurately predicting rock type and rock mass quality over twenty meters in advance of tunnelling can 
optimise decisions about advance support, excavation design, and the reuse of excavated rocks, days 
before the rock mass is excavated. This capability is valuable for efficient tunnel construction and 
resource management. Previous attempts to predict from MWD-data have been hindered by the lack of 
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a big dataset of high-quality drilling data, inadequate methods to capture the complexity of drilling data, 
and the computational demands of processing such data. To the author's knowledge, no studies have 
systematically evaluated the uncertainty of these predictions. For predicting rock type, several studies 
have employed machine learning algorithms with varying degrees of success (Kadkhodaie-Ilkhchi et 
al., 2010; Leung & Scheding, 2015; Silversides & Melkumyan, 2022). Despite their promising results, 
these studies are further limited by the narrow range of rock types considered, small datasets, and a 
focus on single holes, which restricts their applicability and generalizability. In the realm of predicting 
rock mass quality, recent research has explored the relationship between MWD data and rock mass 
metrics that describe overall stability or soundness, primarily through rock mass classification 
approaches (Fernández et al., 2023; Galende-Hernández et al., 2018; van Eldert et al., 2020, 2021). 
However, these studies also grappled with issues of small datasets, subjective human intervention, and 
limited representativeness for large-scale tunnelling projects 
 
This study aims to leverage Measure While Drilling (MWD) data to provide accurate predictions of 
rock type and rock mass quality from long exploratory drillholes through geological transition zones, 
using data from infrastructure tunnels with diverse geology in Norway. 
We introduce confidence metrics for the predictions, enhancing decision support by identifying areas of 
uncertainty. Our study focuses explicitly on challenging geological transition zones. From existing 
studies we know that such ensemble models and MWD-data work well for predicting rock type and rock 
mass quality from short blasting holes (Hansen, Erharter, et al., 2024; Hansen, Liu, & Torresen, 2024). 
In this study we extend the planning horizon significantly and provide uncertainty assessments through 
zones of rapidly changing geology. This way we provide a more comprehensive decision support 
system. 
 
The structure of this paper is organised as follows: Section 2 details the methodology, including the 
dataset description, experimental setup, and evaluation metrics. Section 3 presents the results, covering 
prediction outcomes, communicating uncertainty, and evaluating the precision-recall trade-off. Finally, 
Section 4 provides conclusions and outlook. 
 
 
2     Methods 

2.1 Dataset 

The dataset includes MWD data (features) and rock mass classification (labels) for 4,408 blasting rounds 
from 15 geologically diverse hard rock tunnels across four Norwegian infrastructure projects: UDK, 
UNB, RV4, and E39. The construction and pre-processing of the dataset are described in detail in a 
separate paper (Hansen, Liu, & Torressen, 2024). Precambrian Gneisses, Permian Basalt and Granite, 
Permian Rhomb porphyry, Cambro-Silurian shales, limestone, and claystone are key rock types. Figure  
describes a geological profile of the Permian rocks in the Drammens tunnel. Prediction results and 
confidence metrics will specifically be evaluated in this tunnel's geologic transition zones. 

Figure  illustrates the data collection process conceptually for shorter drillholes. For every 15 m of 
tunnelling, the 24 m exploratory holes are drilled inside the profile and some holes with a five-degree 
inclination out from the tunnel profile. Pre-processed values from all drillholes within a 1 m tunnel 
section (approximately 5000 values) were used to compute mean, median, standard deviation, variance, 
skewness, and kurtosis for each MWD parameter, resulting in 48 MWD-feature values plus three 
geometrical parameters (overburden, tunnel width, and Jn-mult), totalling 51 feature values per sample. 
Mapped to the Q-systems’(reference) Q-class labels and rock type, resulting in 23,277 samples, 
enriching the dataset with feature variations to enhance model performance and generalizability. Q-
values, grouped into stability classes from "Exceptionally good" (class A) to "Exceptionally poor" (class 
G), recommend specific measures for Q-values under 1.0, such as Reinforced Ribs of Shotcrete (RRS) 
and spiling bolts. An accurate binary prediction model identifying this threshold has significant practical 
and economic benefits.  
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Figure 1. Illustrating the collection of MWD values for 1 m tunnel sections. 

 

 
Figure 2. The geologic profile of the Permian rocks in the Drammens tunnel. 

2.2 Experimental setup 

Sample values of features and Q-class or rock type were trained and evaluated by several classifiers 
implemented in Scikit-learn (Random Forest, Extra Trees, KNN, logistic regression, MLP), LGBM, and 
XGBOOST (Pedregosa et al., 2011). Despite efforts to balance the dataset, medium Q-classes naturally 
had more samples. The SMOTE package (Chawla et al., 2002) was used to balance the training dataset 
before feeding it into the ML algorithms. Except for tree models, all tested models performed best when 
features were scaled to the [0,1] range using a MinMax scaler. To avoid data leakage, the pipeline 
functionality in Scikit-learn ensured scaling and balancing were based only on training data. The training 
and evaluation process followed the process outlined in Hansen et al. (Hansen, Liu, & Torresen, 2024) 
to ensure reproducibility. The dataset was split into 75% training and 25% test sets. Hyperparameters 
were tuned using Bayesian optimisation with the Optuna package (Akiba et al., 2019). Each new 
hyperparameter run used 5-fold cross-validation with random splits of the training set into training and 
validation sets. Final training used the entire set with optimised parameters before testing on the 
untouched test set and performing a 5-fold cross-validation on the full dataset. This process classified 
both Q-classes and rock types. The pipeline of processes used to train both target labels is illustrated in 
Figure . 
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Figure 3. Defining the pipeline for the training process used to classify both target labels. 

2.3 Metrics 

To ensure robust analysis and mitigate misleading conclusions, we report several performance metrics 
(James et al., 2013). Each metric highlights different aspects of model performance, focusing on 
classifying rock masses into six categories. 
 
Balanced Accuracy (Avg Recall Macro): Recall for a single class is defined as the ratio of true positives 
(correctly predicted instances of the class) to all actual instances of that class (sum of true positives and 
false negatives). Our primary metric, Balanced Accuracy, is the average recall across all classes, which 
is crucial for our unbalanced dataset. It ensures that larger classes do not disproportionately influence 
performance, vital for detecting weaker rock classes and preventing safety hazards. 
Standard Accuracy: We include standard accuracy for comparison, measuring the proportion of correct 
predictions out of all predictions, providing an overall performance view. 
Average Precision Macro: Avg. Macro Precision complements our recall focus by measuring the ratio 
of true positives to all instances identified as that class. This metric helps understand the false positive 
rate, which is critical in preventing the overestimation of rock strength. 
F1 Score Macro: The F1 Macro Score combines recall and precision, offering a balanced view. It is 
essential for balancing recall and precision, acknowledging future insights that may highlight its 
importance. 
Confusion Matrix: The confusion matrix provides an overview of precision and recall for each class, 
visualising class imbalances and prediction leakage. We present it in three versions: recall, precision, 
and non-normalized, showing correct and incorrect predictions. 

2.4 Calibrating probabilities 

To investigate model uncertainty in class predictions, we use the confidence information represented by 
the probabilities for each class. The class with the highest probability is predicted. A probability 
threshold can classify an instance as "unsure" if no class exceeds that threshold. In this study, we use a 
threshold of 0.8. However, existing probability scores often have flaws. Probabilities from several 
machine learning algorithms, such as tree-based models and KNN, tend to be biased, especially for 
imbalanced datasets (Niculescu-Mizil & Caruana, 2005; Zadrozny & Elkan, 2002). For tree-based 
models, this bias is due to the variance in the underlying base-trees, leading to less confident predictions. 
Conversely, Logistic Regression provides true probabilities as it directly optimises maximum likelihood 
based on cross-entropy loss. To address biased probabilities, one can calibrate them using isotonic and 
sigmoid calibration methods available in Scikit-learn. By comparing the true frequency of the positive 
label against its predicted probability, these methods transform probability values into interpretable 
statistical probabilities. For example, a probability of 0.85 for class B means that 85% of samples with 
similar feature values are correctly classified as class B. 
 
We have constructed precision-recall graphs to visualise how we can adjust the probability threshold to 
vary the predictions of specific classes. To build a precision-recall graph for each class, we begin by 
splitting the dataset into training and testing sets, ensuring the testing set represents all classes. The 
classification model is trained using the training set, and the trained model then predicts probabilities 
for each class in the testing set. By varying the decision threshold from 0 to 1, we calculate precision 

Data 
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Output 
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and recall at each threshold level for each class. Precision is calculated as the ratio of true positives to 
the sum of true positives and false positives, while recall is the ratio of true positives to the sum of true 
positives and false negatives. These values are then plotted with recall on the x-axis and precision on 
the y-axis, using different line styles and colours to distinguish between classes. This results in a 
precision-recall curve for each class, visualising the trade-off between precision and recall across 
different thresholds. 
 
3 Results 

3.1 Predicting rock type and rock quality from long exploratory holes 

The results for predicting Q-class and rock type from long holes closely aligned with existing prediction 
results from blastholes, albeit with approximately 4% lower scores for rock (Hansen, Erharter, et al., 
2024; Hansen, Liu, & Torresen, 2024). This alignment was anticipated, given the comparability of data 
from long exploratory holes and shorter blast holes. We achieved the best performance by using a voting 
classifier in a pipeline that included Min-Max scaling and SMOTE for data balancing. For predicting 
rock type, the voting classifier combined KNN, Extra Trees, and LightGBM algorithms, while for 
predicting rock quality, it combined KNN, Extra Trees, and CatBoost algorithms. This ensemble 
approach excelled by enhancing recall and precision, improving balanced accuracy to 0.92, up from 
0.87 with KNN alone, while maintaining the precision score of Extra Trees. Each algorithm was trained 
separately with its scaler in the voting classifier, and a majority vote determined the final classification. 
By leveraging the distinct advantages of KNN's non-parametric, lazy learning approach and the diverse 
strengths of both bagging (Extra Trees) and boosting (CatBoost for rock quality, LightGBM for rock 
type) methods, we were able to enhance the predictive performance for both rock type and rock quality. 
 
In Figure , we present confusion matrices and metrics for a model trained to predict rock type and rock 
quality on the test set for all tunnels. The numbers are based on concatenating the results from the test 
sets for all splits in a 5-fold cross-validation run. The lower value for limestone seems to be caused by 
similarities in signature with the MWD signature from shale, “leaking” predictions to this rock type. 
 

 
 

Figure 4. Confusion matrixes for predicting rock type and rock quality with a voting classifier. 
 

3.2 Communicating uncertainty 

Communicating uncertainty in predictions is crucial for a transparent AI-model. Transparency is 
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considered one of the key factors in frameworks for ethical AI (Prem, 2023). When humans use ML 
models for decision-making, it is crucial to assess how confident the model is about its predictions. This 
assessment allows humans to determine how the prediction should be incorporated into their final 
decision-making process. By effectively conveying the uncertainty associated with ML predictions, we 
can ensure more informed, transparent, and responsible use of AI systems. This study emphasises 
assessing the uncertainty of predictions, expressed as probabilities, in geologic transition zones. Figure  
illustrates the calibration of probability values for predictions. In this figure, probabilities for the 
predicted class are plotted in a histogram of uncalibrated and calibrated probabilities using sigmoid and 
isotonic techniques. The calibrated values generally shift to the right, indicating increased confidence in 
the predicted class. Since the uncalibrated probabilities were biased towards extreme values for several 
samples, we chose sigmoid calibration for further analysis. 
 

 
Figure 5. Comparison of ML probabilities with two types of calibrated probabilities.  

 
To communicate the calibrated prediction-uncertainty in geologic transition zones, we selected two 
zones in the Drammen tunnel (see geologic profile in Figure ). The plots show predicted rock types in 
five-meter sections along the exploratory holes drilled from the tunnel face. The y-scale indicates 
prediction probability. The tunnel face is on the left in the plot. Predictions below a 0.8 threshold are 
classified as "unsure". The pie charts below illustrate the distribution of probability values for each class 
for a specific prediction. In Figure , the correct prediction should be three Rhombporphyry followed by 
three Drammen Granite, indicating one incorrect prediction. For section 3, the model predicts Drammen 
Granite (60%) and Rhombporphyry (30%) but chooses incorrectly. This is consistent with the nearby 
rocks, suggesting that section 3 might be a mixture of Rhomb porphyry and Drammen granite. 
 
In Figure , the true predictions should be three rounds of Drammen granite and three rounds of Hornfels, 
indicating one error. The incorrect prediction of Rhombporphyry in the transition zone with high 
probability is problematic. The reason for this is unknown but could be due to a mislabelled sample. 
 
In Figure , the correct labels are three Hornfels and three Drammen granite, resulting in three incorrect 
and three uncertain predictions. The most significant error in this plot is the high probability prediction 
of Drammen granite in section 3, where the correct label was Hornfels. An incorrect prediction due to 
uncertainty is less concerning and reflects the changing geology. In all sections with incorrect 
predictions, the choice is between two logical rock types. Notably, there is no sudden high probability 
of Rhombporphyry within the Hornfels zone. 
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Figure 6. Prediction and uncertainty assessment in a geologic transition zone in Drammen tunnel, zone 1 

 
 

 
Figure 7. Prediction and uncertainty assessment in a geologic transition zone in Drammen tunnel, zone 2 
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Figure 8. Prediction and uncertainty assessment in a geologic transition zone in Drammen tunnel, zone 3 

 
Figure 12 illustrates prediction uncertainty conveyed through feature values and bar plots for rock mass 
classification. This visualisation aims to demonstrate alternative methods of communicating uncertainty 
in machine learning models, including providing feature values. Figure 12 presents plots of four random 
blasting rounds detailing feature values, true labels, predicted labels, and probabilities for each class 
within the Q-class labels A, B, C, D, E1, E2. In the figure, blasting rounds three and four are correctly 
predicted as class E2 and C with high confidence. Round one is incorrectly predicted as class E1 instead 
of C. This prediction should be considered uncertain, given the medium-sized probabilities for several 
classes. In round two, probabilities for classes B and C are observed. High probabilities for two 
neighbouring classes suggest a borderline sample between classes B and C. This is analogous to human 
physical mapping. For decision support, this should be conservatively interpreted as class B. 
This leads to a suggested approach for handling prediction uncertainty in ML predictions: 
 

 When only one class has a high probability, the prediction confidence is high. 
 When two neighbouring classes have similar probabilities, the sample is likely a border case 

and should be conservatively interpreted as the class with the poorest ground. 
 When several classes have significant probabilities (typically over 0.1), the classifier is 

uncertain, and the prediction should not be trusted. 
 

The classifier can programmatically implement such probability-based confidence interpretation by 
adding simple target-based logic as the final prediction step. Thus, predictions strengthened with 
confidence information should significantly contribute to a data-driven decision support system for face 
engineers. In the next section, we will explore how to tune the precision-recall trade-off towards 
detecting certain classes, by varying the probability threshold for predictions. 
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Figure 12. Calibrated probability plot of 4 Q-class predictions. Feature values are scaled to a 0-1 interval. 

 

3.3 Tuning the prediction threshold 

 
Figure 13. Precision - recall curves for rock quality classes 

 
The plot in Figure 13 illustrates the precision-recall curves for six rock quality classes within our dataset, 
with each curve representing a different class. The red dots indicate the optimal trade-off points between 
precision and recall for each class, showing where we achieve the best balance of these metrics. For 
instance, examining Class E1 (represented by the magenta dashed line), we observe that adjusting the 
probability threshold for prediction can shift the balance between precision and recall. Specifically, 
lowering the threshold can increase recall, allowing us to detect more E1 samples. This adjustment 
would, however, come at the expense of precision, leading to a greater number of false positives. The 
implications of such an adjustment are significant in practical applications. In scenarios where detecting 
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all instances of Class E1 is critical (e.g., identifying high-risk rock formations), it may be preferable to 
prioritise recall over precision. This approach ensures that most, if not all, E1 samples are identified, 
even if it means accepting a higher rate of incorrect predictions. Conversely, maintaining a higher 
precision may be more desirable in situations where the cost of false positives is high, even at the 
expense of missing some true E1 instances. 
 
Balancing these metrics according to the specific requirements of the application can enhance the 
effectiveness and reliability of the predictive model, making it more suited to the practical needs of 
tunnelling and mining operations. 
 
4 Conclusion and outlook 
 
This study demonstrates the potential of using Measure While Drilling (MWD) data from long 
exploratory holes combined with ensemble machine learning models to predict rock type and rock mass 
quality in infrastructure tunnelling. The findings highlight the value of leveraging high-resolution sensor 
data to improve the planning and execution of rock tunnelling projects. Key findings: 
 

 Accurate Predictions: Achieved balanced accuracies above 0.9 for rock type and 0.8 for rock 
quality (Q-class). 

 Extended Planning Horizon: Enabled predictions several days in advance, providing critical 
information for logistical planning and support design. 

 Ensemble Models: Ensemble machine learning models, including KNN, Extra Trees, and 
LightGBM/CatBoost, demonstrated the best performance. 

 Uncertainty Assessment: Confidence metrics were introduced to enhance decision support, 
particularly in geological transition zones, ensuring more reliable and transparent predictions. 

 Tuning predictions: Demonstrated how to tune predictions by varying the probability threshold 
illustrated by the consequences in the precision-recall trade-off and classifying to a class 
“unsure” below a certain threshold. 

 Practical Application: Demonstrated practical benefits by predicting rock mass characteristics 
in advance, optimising excavation strategies, and improving resource management. 

 
Future research should focus on refining these predictive models, particularly in the challenging 
geologic transition zones, to handle a broader range of geological conditions and extend their 
applicability to other tunnelling projects. Enhancing the dataset with more diverse geological samples 
and improving uncertainty assessment methods will be crucial. Integrating these predictive capabilities 
into real-time decision support systems for tunnelling projects can significantly enhance operational 
efficiency and safety. 
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