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Abstract 
It is important for utilization of underground space or slope disaster prevention to 
determine the water transport in the rock mass including unsaturated zones. To precisely 
predict the two-phase flow of air and water in rock pore spaces, both the hydraulic 
conductivity and gas permeability must be accurately identified. Most existing methods 
estimate air permeability under steady-state conditions. There are still few methods for 
evaluating air permeability under unsteady state conditions. This study proposes a 
method of identifying the ever-changing permeability with time and pressure using a 
linearized governing equation for air permeability in porous media. To validate the 
method, we compared the exact solution derived with the results of air permeability 
laboratory tests on granite and conglomerate in previous studies. After confirming that 
the exact solution well represented the results of previous experiments, the unsteady air 
permeability of the rock was estimated from the results of the same experiments using 
the proposed method. As a result, it was confirmed that not only can the air permeability 
be identified with the same accuracy as the steady-state method, but also the unsteady 
air permeability, which varies with pressure, can be identified. 
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1     Introduction  
 
It is important for geological disposal of nuclear waste and large-scale collapse of rock slopes due to 
heavy rain fall to understand the properties of unsaturated rocks because the mechanical properties of 
rocks change significantly with water content (e.g. Chigira, 2015; Osada, 2014). The authors have been 
studying changes in the strength and deformation properties of sedimentary rocks associated with water 
content (Togashi and Imano et al., 2021; Togashi and Kikumoto et al., 2021; Kotabe et al., 2024) and 
water transport in the excavation disturbed zone (Osada et al., 2019; Togashi et al., 2022). To precisely 
predict the two-phase flow of air and water in rock pore spaces, both the hydraulic conductivity and gas 
permeability must be accurately identified. Most existing methods estimate the air permeability from 
the differential pressure under steady-state conditions (e.g. Sakaguchi et al., 1992). There are still few 
methods for evaluating air permeability under unsteady state conditions. 
 
This study proposes a method of identifying the ever-changing permeability with time and pressure 
using a linearized governing equation for air permeability in porous media. This method is based on an 
exact solution of the linear diffusion equation. To validate the method, we then compared the exact 
solution derived with the results of air permeability laboratory tests on granite and conglomerate in 
previous studies. After confirming that the exact solution well represented the results of previous 
experiments, the unsteady air permeability of the rock was estimated from the results of the same 
experiments using the proposed method. 
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2     Methods 
 
2.1  Non-liner partial differential equation of unsteady gas flow 
 
Below, the governing equation of unsteady gas flow is derived according to the method of Katz (1959). 
The ideal gas law is as follows. 
 

 
(1) 

 
where r, M, P, R and T are density, amount of substance, air pressure, gas constant and temperature, 
respectively. Darcy’s law is given by the following equation, where the flow velocity is u. 
 

 

(2) 

 
Here, K and m are intrinsic air permeability coefficient and viscosity coefficient. The following is the 
continuous equation. 
 

 

(3) 

 
where l is porosity. Substituting Eq. (1) into Eq. (2) to eliminate P and substituting Eq. (3) yields: 
 

 

(4) 

 
Here, M / RT = g is set. The partial differential on the right side of this equation can be transformed as 
follows. 
 

 

(5) 

 
The one-dimensional air permeability phenomenon is expressed by the following governing equation 
for density. 
 

 

(6) 

 
Here, if Eq. (1) is assigned to r in Eq. (6) with M / RT (= g ) as a constant, the governing equation of the 
air permeability phenomenon for P is obtained and g disappears as follows. 
 

 

(7) 

 
This equation is well known as the governing equation for the diffusion of porous media. 
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2.2  Simplification of the governing equation and exact solution for unsteady gas flow 
 
As shown in Fig. 1, let the air pressures acting on x = 0 and x = l be P0 and Pl, respectively. If the 
difference between P0 and Pl is small, the pressure in the analysis area is small, so it is assumed to liner 
relationships P2 ≃ (P0 + Pl)P. This means that the difference between P2 and (P0 + Pl)P is small around 
P = P0 + Pl. Based on this assumption, the governing equation of unsteady gas flow, Eq. (7), becomes 
the following linear diffusion equation. 
 

 
Figure 1. Problem setting of one dimensional gas flow. 

 
 

 

(8) 

 
It should be noted that G = K(P0 + Pl) / (2lm) . By changing the variables as h = x / 2(Gt)0.5, the 
infinitesimal increment of time, Dt and the square of the infinitesimal increment of coordinates, Dx2, 
can be expressed as follows. 
 

 

(9) 

 
Substituting these small increments into Eq. (8) gives: 
 

 

(10) 

 
Equation (10) is a second-order homogeneous differential equation of variable coefficients, which is 
solved under the following boundary conditions. 
 

 

(11) 

 
When dh = D, Eq. (10) becomes a first-order linear differential equation as follows. 
 

 

(12) 

 
When this equation is separated into variables, integrated on both sides and solved to obtain the equation 
for P, it becomes as follows. 
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(13) 

 
where c and F are arbitrary constants of integration. From the boundary condition, P(h =0) = F = P0 and 
c = (Pl – P0) / ∫ exp(−h2) dh. The unsteady exact solution can be obtained by the following equation 
using the error function erf(x) = (2 / π0.5) ∫ exp(−t2) dt. Note that the interval of the integral sign in the 
sentence is [0, x]. 
 

 

(14) 

 
2.3  Air permeability coefficient determination detection using un-steady exact solution 
 
Here, we show how to specify the intrinsic permeability coefficient and unsaturated hydraulic 
conductivity using the exact solution of unsteady gas flow derived in the previous section. As shown in 
Fig. 1, a method for identifying the intrinsic air permeability coefficient K is shown by measuring the 
air pressure at the pressure boundary (x = 0, L) and the air pressure at one point inside the rock specimen 
(x = L/2). If the error function in the exact solution is expressed by a simple mathematical formula, the 
intrinsic air permeability coefficient K can be specified. The Taylor expansion of the error function is 
(Abramowitz et al. 1965): 
 

 

(15) 

 
By rearranging Eq. (14) and setting the ratio of the error functions to the symbol R, the following is 
obtained. 
 

 

(16) 

 
At the position inside the specimen x = l / 2, h = 0.5 l / (2 (Gt)0.5) = 0.5 a. Therefore, using the Taylor 
expansion of the error function up to the first-order term, the above equation becomes as follows. 
 

 

(17) 

 
By transforming this into an expression, expressing a2 by R, and substituting a = l / 2(Gt)0.5 following is 
obtained. 
 

 

(19) 

 
Here, G = K(P0 + Pl) / 2lm , so G is represented by R as follows. 
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(20) 

 
From the above, the following equation for finding K is obtained. 
 

 

(21) 

 
P0, P, and Pl are barometric pressure increments measured at the start, midpoint, and end points, 
respectively. In this way, if there are measurement data at three points, the intrinsic air permeability 
coefficient K can be explicitly obtained. In this equation, the back of the right side is the pressure ratio 
function, f (R) = (8R−1) / (24R−12) . The outline of this function is as shown in Fig. 2. f (R) diverges at 
R = 0.5. On the other hand, if R deviates from 0.5, it shows a value close to constant (f (R) ≈ 1). Based 
on these properties, in the next section, we verify the method for specifying Eq. (21). The conversion 
between the intrinsic permeability coefficient and the unsaturated permeability coefficient is also 
described. According to Taylor (1943), the relationship between the intrinsic permeability coefficient K 
[m2] and the unsaturated hydraulic conductivity kw [m/s] is expressed by the following equation. 
 

 
(22) 

 
 

 
 

Figure 2. The nature of f (R) = (8R−1) / (24R−12). 
 
rw [g/cm3], g [m/s2], and mw [Pa · s] are water density, gravitational acceleration, and water viscosity 
coefficient, respectively. mw at standard atmospheric pressure (0.1013MPa) and temperature of 20 
degrees is 0.001016 Pa·s (e.g. Miyabe and Nishikawa 1968). When rw and g are 1.0 g/cm3 and 9.81 m/s2, 
and the unit of kw is changed to m2 (e.g. JAGH 2010), kw = 0.97K can be obtained. Therefore, under 
standard atmospheric pressure and temperature, the unsaturated hydraulic conductivity kw and the 
intrinsic permeability coefficient K are almost equal. 
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3     Verification of the proposed method in laboratory air permeability test results  
 
Here, we verify the proposed method for specifying the intrinsic air permeability coefficient using the 
results of previous experiments for unsteady gas flow. This test conducted under the same boundary 
conditions of the exact solution as described in previous section. 
 
 
3.1  Air permeability coefficient determination detection using un-steady exact solution 
 
As shown in Fig. 3, Sato and Ono (1987) permeated nitrogen gas from the upper end of a cylindrical 
rock specimen and measured changes in air pressure inside the specimen. In this experiment, the 
pressure at the lower end of the specimen is zero Pl = 0, and in this study, the experimental cases shown 
in Table 1 are taken up as verification of the proposed method. These rocks are sampled in Japan. The 
Granite is from Ibaraki prefecture, which has been often used as a research sample in Japan (e.g. Oda et 
al., 2002; Takemura and Oda, 2005). Here, the intrinsic air permeability coefficient is obtained from the 
measured values in the steady state by the following equation (Sakaguchi et al., 1992). 
 

 

(23) 

 
where Ks, Q, pa, and A are intrinsic air permeability coefficient at steady state, the amount of air 
permeability, air pressure, and the cross-sectional area of the specimen, respectively. Other parameters 
are the same as above. The experimental results are shown in Fig. 4. This shows the time series change 
of the air pressure measured in the center of the specimen. The results of three tests in which the value 
of P0 is changed are shown. The air pressure gradually rises to a constant value. Using these unsteady 
data, it is verified whether the intrinsic air permeability coefficient can be appropriately specified by Eq. 
(21). 

 
 

Figure 3. Laboratory air permeability test conducted by Sato and Ono (1987). 
 

Table 1. Test cases of laboratory air permeability test by Sato and Ono (1987) 

Rock type 
Porosity  
l (%) 

Specimen 
diameter (m) 

Specimen 
height (m) 

Case P0 (MPa) Ks (m2) 

Granite 0.92 0.2 0.2 

1 0.2 1.7 × 10-16 

2 0.3 2.0 × 10-16 

3 0.38 3.8 × 10-16 

Conglomerate 0.94 0.052 0.2 

1 0.33 5.4 × 10-18 

2 0.48 8.2 × 10-18 

3 0.57 8.8 × 10-18 
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Figure 4. Unsteady gas flow of Japanese Granite (a) and Conglomerate (b) by Sato and Ono (1987): 
time series of P detected at the center of cylindrical specimen. 

 
 
3.2  Identified intrinsic air permeability coefficient verification and its discussions 
 
Figure 5 shows the results of determining the intrinsic air permeability coefficient K by Eq. (21) using 
the experimental results of unsteady pressure changes in Fig. 4. Here, the value of the air viscosity 
coefficient m is 1.81 × 10−11 MPa · s. As the pressure ratio increases, K increases. This is the same 
tendency of the air permeability coefficient Ks specified in the steady state (in Table 1), and indicates 
that the larger the pressure, the easier it is for air to pass through. The value of K obtained from the 
unsteady data using the proposed method is a little smaller than the value of Ks obtained by waiting until 
the steady state is reached. The magnitude of the K and Ks values is almost the same as 10−16 − 10−17 m2 
for granite and 10−18 m2 for conglomerate. Figure. 2 shows that the method of specifying K diverges 
around K = 0.5, but if R is greater than 0.55, it is possible to specify an appropriate K without diverging. 
 

 
 

Figure 5. Relationships between identified intrinsic air permeability coefficient, K,  
and air pressure ratio (P −P0)/(Pl – P0) for Granite (a) and Conglomerate (b). 
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Figure 6. Comparison between experimental granite data of Fig. 4 (a) and exact solution (Eq. (14)) by 

using detected unsteady intrinsic air permeability coefficient, K. 
 
Figure 6 compares the previous experimental results of granite in Fig. 4 with the exact solution, Eq. 
(14), calculated using the specified intrinsic air permeability coefficient, K. The figure shows an exact 
solution using the specified maximum, median, and minimum values of K. Similarly, Fig. 7 also shows 
a comparison of conglomerate. In all the results, the linearized unsteady exact solution using the intrinsic 
air permeability coefficient specified by the proposed method is in good agreement with the 
experimental results of Sato and Ono (1987). In particular, the exact solution using the smallest value 
of K shows a good match. This linearized exact solution assumed a small differential pressure. By this 
comparison, the exact solution can sufficiently express the actual phenomenon if the differential 
pressure P0 −Pl is about 0.57 MPa. Therefore, as stated above, the validity of both the exact solution of 
the linearized unsteady gas flow (Eq. (14)) and the method of specifying K using the unsteady data (in 
Eq. (21)) was shown. 
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Figure 7. Comparison between experimental conglomerate data of Fig. 4 (b) and exact solution (Eq. 
(14)) by using detected unsteady intrinsic air permeability coefficient, K. 

 
 

4     Conclusion 
 
This study presents a new method to reasonably determine the unsteady air permeability using laboratory 
air permeability tests. Therefore, we show how to linearize the basic equation for air permeability with 
respect to air pressure by Katz (1959) and how to specify the air permeability explicitly from the 
linearized equation. The proposed method was applied using the results of previous air permeability 
tests to show that the identified unsteady air permeability coefficient is a reasonable value and that the 
linearized equations adequately represent the experimental pressure fluctuations. Future work includes 
further experimental investigations in the room and development of techniques to be applied to in-situ 
measurements. 
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